În lumea de astăzi, Global Positioning System este un subiect care a căpătat o relevanță fără precedent. Impactul său se extinde în toate domeniile vieții de zi cu zi, de la politică la cultura populară, prin tehnologie și societate. Odată cu trecerea timpului, Global Positioning System a devenit un fenomen care nu distinge granițe sau bariere, deoarece influența sa traversează toate tipurile de contexte și realități. În acest articol, vom explora în profunzime numeroasele fațete ale Global Positioning System, analizând implicațiile și consecințele sale în diferite domenii ale vieții de zi cu zi.
Acest articol sau această secțiune are bibliografia incompletă sau inexistentă. Puteți contribui prin adăugarea de referințe în vederea susținerii bibliografice a afirmațiilor pe care le conține. |
Global Positioning System (din engleză; în traducere liberă, Sistem de Poziționare Globală; prescurtat GPS, care se citește gi-pi-es) este un sistem global de navigație prin satelit și unde radio. Sistemul GPS este o rețea de sateliți care orbitează în jurul Pământului în puncte fixe deasupra planetei, transmițând semnale tuturor receptorilor aflați la sol. Aceste semnale conțin un cod de timp și un punct de date geografice care permit utilizatorului să primească poziția exactă în care se află, viteza și ora din orice regiune de pe planetă. GPS funcționează în orice condiții meteorologice, oriunde în lume, 24 ore pe zi.
Principalul sistem de poziționare prin satelit de tip GPS este sistemul militar american numit "Navigational Satellite Timing and Ranging" (NAVSTAR). Acest sistem, inițiat și realizat de către Departamentul Apărării al Statelor Unite ale Americii (DOD), poate calcula poziția exactă = coordonatele geografice exacte ale unui obiect pe suprafața Pământului, cu condiția ca acesta să fie echipat cu dispozitivul necesar - un receptor GPS. NAVSTAR utilizează sistemul geodezic WGS84, la care se referă toate coordonatele geografice calculate de sistem.
În prezent, sistemul GPS este utilizat în numeroase domenii, aviație și marină, găsirea rutelor pentru șoferi, crearea hărților, cercetare seismică, studii climatice, căutare de comori etc. Obiectul poate fi și o persoană, care poate astfel să se orienteze pe pământ, pe apă, în aer sau și în spațiu (în apropierea Pământului).
Primul sistem GPS, „Jones Live Map”, a fost inventat de J.W. Jones, în 1909. Dispozitivul a fost primul sistem de ghidaj pentru automobiliști ce consta din mai multe discuri imprimate cu hărți care îi arăta șoferului direcția prin manevrarea unor cadrane speciale. Discurile acopereau 100 de mile de drumuri cunoscute, cartografiate de The Touring Club of America. La fiecare 100 de mile, discul trebuia schimbat. Până în 1919, sistemul inventat de Jones, acoperea peste 500 de rute din S.U.A., de la New York la Los Angeles. [1]
La începutul anilor '40, Marina Regală Britanică dezvoltă în timpul celui de-al Doilea Război Mondial, sistemele de radionavigație la sol, LORAN și Decca Navigator.
Ideea implementării GPS a venit odată cu lansarea navei spațiale sovietice Sputnik în 1957, care a fost proiectat inițial pentru aplicabilitate în domeniul militar în anii 1960, la începutul Războiului Rece. Doi fizicieni americani, William Guier și George Weiffenbach, de la Applied Physics Laboratory (APL), au decis să monitorizeze transmisiile radio ale satelitului Sputnik. Aceștia au realizat că, datorită efectului Doppler, puteau localiza punctul satelitului în orbită, precum și locul utilizatorului cunoscându-l pe cel al satelitului.
Primul sistem de navigație prin satelit, Transit, folosit de Marina SUA, a fost testat cu succes în 1960. Alcătuit dintr-o constelație de cinci sateliți, putea furniza o poziționare ce se actualiza o dată pe oră.
Sistemul GPS NAVSTAR a fost lansat în 1974 de către Departamentul Apărării al Statelor Unite ale Americii.
Între 1978 și 1985, sistemul GPS s-a dezvoltat rapid pentru scopuri militare, cu un total de 11 sateliți de tipul Block I.[2]
Din 1983, utilizarea sistemului GPS se face și în scopuri civile, cu aplicabilitate în domeniul aviatic și cel naval.
În anul 1989 s-au lansat primii sateliți Block II,[3] iar în 1993, SUA a lansat pe orbită cel de-al 24-lea satelit Navstar, care a completat o rețea de 24 de sateliți, cunoscută acum sub denumirea de Sistem de Poziționare Globală, sau GPS. Un număr de 21 de sateliți erau activi în permanență, iar alți 3 erau de rezervă. Sistemul a devenit în totalitate operațional în anul 1995. În prezent, rețeaua GPS are aproximativ 30 de sateliți activi în rețeaua GPS.
Noile cerințe pentru sistemul existent au condus la eforturi de modernizare a sistemului GPS prin implementarea noii generații de sateliți GPS III[4] și următoarea generație a sistemului operațional de control Operational Control Segment (OCX)[5][6][7]
Un sistem GPS este alcătuit din trei segmente:
Segmentul spațial este format dintr-o constelație de sateliți, care emit semnale modulate cu coduri și mesaje de navigație; fiecare satelit transmite semnale radio sub forma a două unde, pentru utilizatorii civili și pentru utilizatori militari.
Generațiile succesive de sateliți GPS sunt desemnați prin denumirea Block:
Sateliți | Număr | Anul lansării | Aflați în orbită |
---|---|---|---|
Block I | 11 | 1978–1985 | 0 |
Block II | 9 | 1989-1990 | 0 |
Block IIA | 19 | 1990-1997 | 0 |
Block IIR | 12 | 1997-2004 | 12 |
Block IIR-M | 8 | 2005–2009 | 7 |
Block IIF | 12 | 2010-2016 | 12 |
Block III | 12 | 2016-2017 | 0 |
Total | 31 |
Segmentul de control este alcătuit din rețeaua de stații de control situată la sol; este utilizată pentru supravegherea sateliților și actualizarea mesajelor de navigație ale sateliților; aceste stații au rolul de a recepționa continuu semnalele tuturor sateliților, de a calcula datele referitoare la poziția fiecărui satelit, verificarea preciziei ceasurilor sateliților și de a retransmite aceste date fiecărui satelit.
Segmentul utilizatori este constituit din totalitatea utilizatorilor civili și militari care folosesc un receptor GPS. [9]
Principiul de funcționare al GPS-ului este folosirea câtorva sateliți din spațiu ca puncte de referință pentru localizarea la sol. Sateliții GPS înconjoară Pământul de două ori pe zi, pe orbite foarte precis determinate și transmit semnale către stațiile terestre.
Sistemul NAVSTAR dispune la ora actuală (2016) în total de 31 sateliți, care se afla la o înălțime de 20.183 km de suprafața Pământului. Printr-o măsurare foarte exactă a distanței în linie dreaptă dintre receptor și cel puțin 4 sateliți se poate determina poziția oricărui punct de pe Pământ (latitudine, longitudine, altitudine), aceasta numindu-se "poziția calculată" (position fix în engleză), în contrast cu "localizarea", termen dedicat poziției reale a receptorului. În mod normal pentru determinarea poziției în 3D a unui punct de pe suprafața terestră cu ajutorul poziției sateliților ar fi nevoie de doar trei distanțe (trei sateliți), deoarece metoda care se utilizează este cea a triangulației. Totuși la GPS este nevoie și de a patra distanță, pentru minimizarea erorilor de poziționare datorate ceasurilor din receptoare, care nu sunt suficient de exacte în comparație cu ceasurile atomice din sateliții utilizați.
Stabilirea poziției spațiale a unui punct se poate face prin determinarea pseudo-distanței sau prin determinarea fazei.
Fiecare satelit transmite constant semnale de navigație cu o viteză de 50 biți/sec pe frecvențe din spectrul electromagnetic. Semnalele vor trece prin nori, sticlă, plastic, însă nu vor trece de majoritatea obiectelor solide (clădiri, munți, etc)
Semnalul GPS oferă coordonate precise în conformitate cu ceasul atomic al satelitului, precum și statusul în care se află satelitul. Fiecare transmisie are o durată de 30 de secunde și conține 1500 biți de informații codate. Această cantitate de date este codificată cu o secvență PRM (partial-response modulation) care diferă de la un satelit la altul. Receptorii GPS recunosc codurile PRM ale fiecărui satelit și decodează semnalul.
Sateliții din sistemul GPS transmit două semnale purtătoare: frecvența L1 (1575,45 MHz), conține mesajul de navigație și semnalele de cod SPS (Serviciul de poziționare standard), frecvența L2 (1227,60 MHz), folosită pentru măsurarea întârzierii provocată de ionosferă. [10]
Un semnal GPS conține trei tipuri de informație:
Recepționarea semnalelor emise de sateliți și calculul poziției se poate face în două moduri: modul absolut și modul diferențial.
În general sistemul militar american NAVSTAR este foarte precis; totuși, pentru folosirea sa de către alte organizații sau state, de obicei numai pentru scopuri civile (navigație rutieră ș.a.), NAVSTAR pune la dispoziție doar o exactitate redusă. De asemenea, SUA își rezervă dreptul de a nu mai pune deloc la dispoziție sistemul, de exemplu în cazul unor conflicte militare ș.a.
Înregistrarea datelor primite de la sateliți poate fi efectuată prin două modalități:
Metoda dinamică „Stop and Go” este o îmbinare a primelor două metode; operatorul se deplasează cu receptorul GPS din punct în punct pe traseul dorit, în fiecare punct staționându-se o anumită perioadă de timp.
Factorii care pot degrada semnalul GPS și astfel pot afecta precizia sunt:
Receptorul GPS este un aparat capabil să recepționeze semnalele emise de sateliți și, în funcție de acestea, să determine poziția lui pe glob. Poziția este exprimată în coordonatele de bază în sistemul geodezic mondial WGS 84 (World Geodetic System 1984).
În general, receptoarele GPS sunt compuse dintr-o antenă incorporată reglată la frecvențele transmise de sateliți, receptor-procesoare, și un ceas extrem de stabil (oscilator de cristal). Acestea pot include, de asemenea, un ecran tactil pentru afișarea informațiilor pentru utilizator. Începând cu anul 2007, receptoarele au în general între 12 și 20 de canale, adică pot monitoriza simultan 12 ... 20 sateliți.
Receptoarele GPS determină localizarea exactă a utilizatorului și o afișează pe ecran, folosind măsurători de distanță de la mai mulți sateliți. Pentru a calcula o pozitie 2D (latitudine și longitudine), un receptor GPS trebuie să primească simultan semnale de la minimum trei sateliți, iar dacă culege informații de la patru sau mai mulți sateliți, poate calcula o poziție 3D (latitudine, longitudine și altitudine). De asenemea, poate calcula alte informatii utile, cum ar fi viteza, cursul, direcția de mișcare, distanța parcursă, distanța până la destinație, ora răsăritului și apusului etc.
Receptoarele GPS din prezent sunt foarte precise, datorită tehnologiei „parallel multi-channel”. Differential GPS (DGPS), GPS Diferențial, este o tehnologie care corectează semnalul GPS până la o precizie de 3-5 metri. [11]
Anumiți factori atmosferici sau surse de erori pot afecta buna funcționare a receptoarelor GPS. În mod normal, receptorii GPS nu operează în spații închise, sub apă sau sub pământ.
Dispozitivele de recepție GPS pot include:
Software comercial cu hărți preinstalate:
În prezent, sistemul GPS-ul este utilizat în numeroase domenii, având aplicații civile și militare semnificative.
Sistemul GPS are o multitudine de aplicații civile dintre cele mai diverse în multe dintre domeniile de activitate umană.
Pe lângă NAVSTAR-GPS, mai există și alte sisteme de navigare, complet operaționale sau în curs de implementare:
În condițiile în care sistemele de tip GPS se bazează pe un semnal de nivel relativ slab, există pericolul ca acesta să nu mai poată fi recepționat din diverse motive. Unul dintre motivele principale îl constituie bruiajul intenționat al semnalului GPS. Această situație poate să apară în perioade de conflict sau drept urmare a unor acțiuni cu caracter terorist.[20]