Măsură (matematică) este un subiect care a generat un mare interes și dezbatere în societatea actuală. Odată cu progresul tehnologiei și schimbările în modul în care relaționăm, Măsură (matematică) și-a asumat un rol relevant în viața de zi cu zi a oamenilor. De la origini și până la influența sa asupra prezentului, Măsură (matematică) a marcat un înainte și după în diferite aspecte ale vieții, de la economie la politică. În acest articol, vom explora importanța și implicațiile Măsură (matematică) astăzi, precum și implicațiile sale în viitor.
![]() | Calitatea informațiilor sau a exprimării din acest articol sau secțiune trebuie îmbunătățită. Consultați manualul de stil și îndrumarul, apoi dați o mână de ajutor. |
În teoria măsurilor, o măsură (măsură = mărime) a unui ansamblu (ansamblu = mulțime) este un mod sistematic de atribuire la fiecare subansamblu corespunzător unei valori numerice, interpretată intuitiv ca mărimea acelui subansamblu. Această generalizare nu are o semnificație fizică imediată, dar are multe aplicații în analiza matematică și în teoria probabilităților.
În acest sens, măsura este un concept din matematica superioară care extinde noțiunile de lungime, arie, volum și aceasta în cazul mulțimilor. Există mai multe tipuri de măsuri: măsura Jordan, măsura Borel, măsura Lebesgue etc. Un exemplu particular important este Măsura Lebesgue pe un spațiu euclidian, care atribuie convențional lungimea, aria, volumul din Geometria Euclideană la mulțimi de subansamble corespunzătoare cu Rn, n = 1, 2, 3, .... ca de exemplu, măsura Lebesgue al în mulțimea numelor reale este valoarea sa în înțeles corect, în special 1.
Pentru a defini măsura (vezi definiția de mai jos), o funcție care atribuie un număr real pozitiv sau care tinde la +∞ pe subansamblul unui ansamblu sau pe o mulțime de subansamble (fie o sumă algebrică Σ : X → R; unde X este un câmp de evenimente sau un clan, și care are anumite proprietăți sau condiții; măsura matematică este o funcție μ Є Σ; unde Σ > 0).
Fie Σ o sumă algebrică σ-algebrică a unui ansamblu X. O funcție μ definită pe Σ unde σ-algebrică Σ → R este numită măsură dacă sunt satisfăcute proprietățile: