În lumea de astăzi, Micul dodecaedru trunchiat stelat este un subiect care a captat atenția multor oameni din diferite zone ale societății. De la impactul său asupra economiei până la influența asupra culturii populare, Micul dodecaedru trunchiat stelat a devenit un subiect de mare relevanță astăzi. Odată cu progresul tehnologiei și schimbările constante din societate, este crucial să înțelegem și să analizăm modul în care Micul dodecaedru trunchiat stelat ne afectează viața. În acest articol, vom explora diferite aspecte ale Micul dodecaedru trunchiat stelat și impactul său asupra lumii noastre, de la origini până la relevanța sa astăzi.
Micul dodecaedru trunchiat stelat | |
![]() | |
(model 3D) | |
Descriere | |
---|---|
Tip | poliedru uniform neconvex |
Fețe | 24 (12 pentagoane, 12 decagrame) |
Laturi (muchii) | 90 |
Vârfuri | 60 |
χ | −6 |
Configurația vârfului | 5.10/3.10/3[1] |
Simbol Wythoff | 2 5 | 5/3[1] sau 2 5/4 | 5/3 |
Simbol Schläfli | t{5/3,5} |
Diagramă Coxeter | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Grup de simetrie | Ih, , (*532) [1] |
Volum | ≈4,698 a3 (a = latura) |
Poliedru dual | marele dodecaedru pentakis |
Proprietăți | uniform, neconvex |
Figura vârfului | |
![]() |
În geometrie micul dodecaedru trunchiat stelat este un poliedru stelat uniform, cu indicele U58. Are 24 de fețe (12 pentagoane și 12 decagrame), 90 de laturi și 60 de vârfuri.[1] Având 24 de fețe este un icositetraedru neconvex. Un poliedru neconvex are fețe care se intersectează care nu reprezintă laturi sau fețe noi. Doar cele marcate cu sfere aurii sunt vârfuri, iar cele cu linii argintii sunt laturi.
Are simbolul Wythoff 2 5 | 5/3,[1][2] simbolul Schläfli t{5/3,5}, și diagrama Coxeter .
Având în comun vârfurile cu compusul de șase prisme pentagramice, coordonatele carteziene ale vârfurilor sale cu lungimea laturii 2, centrat în origine, sunt toate permutările ale[3][4]
plus toate permutările pare ale
unde este secțiunea de aur.
Raza circumscrisă în funcție de lungimea laturilor a este:[5]
Următoarea formulă pentru volum V este stabilită pentru lungimea laturilor tuturor poligoanelor (care sunt regulate) a este:
Acest compus are în comun aranjamentul vârfurilor cu trei poliedre uniforme: rombicosidodecaedrul, micul dodecicosidodecaedru și micul rombidodecaedru și cu doi compuși poliedrici uniformi: compusul de șase prisme pentagramice și compusul de douăsprezece prisme pentagramice.
![]() Rombicosidodecaedru |
![]() Micul dodecicosidodecaedru |
![]() Micul rombidodecaedru |
![]() Micul dodecaedru stelat trunchiat |
![]() Compus de șase prisme pentagramice |
![]() Compus de douăsprezece prisme pentagramice |
Dualul său este marele dodecaedru pentakis.[6]