Micul dodecicosidodecaedru

În acest articol, vom explora Micul dodecicosidodecaedru în profunzime, un subiect care a stârnit mult interes și dezbatere în ultimii ani. De la origini până la impactul său asupra societății actuale, vom examina toate aspectele legate de Micul dodecicosidodecaedru pentru a oferi o imagine de ansamblu cuprinzătoare și completă. Prin interviuri, cercetări și analize, vom căuta să înțelegem mai bine acest subiect și influența sa asupra diferitelor domenii ale vieții de zi cu zi. De la relevanța sa în mediul academic până la rolul său în cultura populară, Micul dodecicosidodecaedru a captat atenția multora și a generat o serie de întrebări și preocupări pe care vom încerca să le abordăm în acest articol. Alăturați-vă nouă în această călătorie de descoperire și învățare despre Micul dodecicosidodecaedru!

Micul dodecicosidodecaedru
(model 3D)
Descriere
Tippoliedru uniform neconvex
Fețe44 (20 triunghiuri
      12 pentagoane
      12 decagoane)
Laturi (muchii)120
Vârfuri60
χ−16
Configurația vârfului5.10.3/2.10[1]
Simbol Wythoff3/2 5 | 5[1] sau 3 5/4 | 5
Diagramă Coxeter
Grup de simetrieIh, , (*532) [1]
Volum≈55,342 a3   (a = latura)
Poliedru dualmicul hexaconatedru dodecacronic
Proprietățiuniform, neconvex
Figura vârfului

În geometrie micul dodecicosidodecaedru este un poliedru uniform neconvex, cu indicele U33. Are 44 de fețe (20 de pătrate, 12 pentagoane și 12 decagoane), 120 de laturi și 60 de vârfuri.[1][2] Având 44 de fețe, este un tetracontatetraedru.

Este reprezentat prin diagramele Coxeter–Dynkin . Figura vârfului este un patrulater autointersectat. Un poliedru neconvex are fețe care se intersectează care nu reprezintă laturi sau fețe noi. Doar cele marcate cu sfere aurii sunt vârfuri, iar cele cu linii argintii sunt laturi.

Are simbolul Wythoff 3/2 5 | 5[1] sau 3 5/4 | 5.

Mărimi asociate

Coordonate carteziene

Coordonatele carteziene ale vârfurilor unui mic dodecicosidodecaedru centrat în origine, cu lungimea laturii de 2, sunt toate permutările pare ale:[3][4]

unde este secțiunea de aur.

Raza sferei circumscrise

Raza sferei circumscrise este distanța comună a vârfurilor față de origine, și anume pentru lungimea laturii egală cu 2. Pentru lungimea laturii a, această valoare devine:[2]

Volum

Următoarea formulă pentru volum V este stabilită pentru lungimea laturilor tuturor poligoanelor (care sunt regulate) a:

Poliedre înrudite

Are în comun aranjamentul vârfurilor cu micul dodecaedru trunchiat stelat, compusul de șase prisme pentagramice și compusul de douăsprezece prisme pentagramice. În plus, are în comun aranjamentul laturilor cu rombicosidodecaedrul (având fețele triunghiulare în comun) și cu micul rombidodecaedru (având fețele decagonale în comun).


Rombicosidodecaedru

Micul dodecicosidodecaedru

Micul rombidodecaedru

Micul dodecaedru trunchiat stelat

Compus de șase prisme pentagramice

Compus de douăsprezece prisme pentagramice
Doal: micul hexaconatedru dodecacronic

Poliedru dual

Dualul său este micul hexaconatedru dodecacronic.[5]

Note

  1. ^ a b c d e en Maeder, Roman. „33: small dodecicosidodecahedron”. MathConsult. Accesat în . 
  2. ^ a b en Eric W. Weisstein, Small dodecicosidodecahedron la MathWorld.
  3. ^ en Coxeter, H.S.M. Regular Polytopes (third edition), Dover Publications Inc, 1973 ISBN: 0-486-61480-8, p. 52, §3.7 Coordinates for the vertices of the regular and quasi-regular solids
  4. ^ en Eric W. Weisstein, Icosahedral group la MathWorld.
  5. ^ en Wenninger, Magnus (), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208 

Bibliografie

Vezi și

Legături externe